Abstract
Sex dimorphism in Parkinson's disease (PD) is an ostensible feature of the neurological disorder, particularly as men are 1.5-2 times more likely to develop PD than women. Clinical features of the disease, such as presentation at onset, most prevalent symptoms, and response to treatment, are also affected by sex. Despite these well-known sex differences in PD risk and phenotype, the mechanisms that impart sex dimorphisms in PD remain poorly understood. As PD incidence is influenced by environmental factors, an intriguing pattern has recently emerged in research studies suggesting a male-specific vulnerability to dopaminergic neurodegeneration caused by neurotoxicant exposure, with relative protection in females. These new experimental data have uncovered potential mechanisms that provide clues to the source of sex differences in dopaminergic neurodegeneration and other PD pathology such as alpha-synuclein toxicity. In this review, we discuss the emerging evidence of increased male sensitivity to neurodegeneration from environmental exposures. We examine mechanisms underlying dopaminergic neurodegeneration and PD-related pathologies with evidence supporting the roles of estrogen, SRY expression, the vesicular glutamate transporter VGLUT2, and the microbiome as prospective catalysts for male vulnerability. We also highlight the importance of including sex as a biological variable, particularly when evaluating dopaminergic neurotoxicity in the context of PD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.