Abstract
Women are more likely than men to suffer from psychiatric disorders characterized by corticotropin releasing factor (CRF) hypersecretion, suggesting sex differences in CRF sensitivity. In rodents, sex differences in the sensitivity of specific brain regions to CRF have been identified. However, regions do not work in isolation, but rather form circuits to coordinate distinct responses to stressful events. Here we examined whether CRF activates different circuits in male and female rats. Following central administration of CRF or artificial cerebrospinal fluid (aCSF), neuronal activation in stress-related areas was assessed using cFOS. Functional connectivity was gauged by correlating the number of cFOS-positive cells between regions and then identifying differences within each sex in correlations for aCSF-treated and CRF-treated groups. This analysis revealed that CRF altered different circuits in males and females. As an example, CRF altered correlations involving the dorsal raphe in males and the bed nucleus of the stria terminalis in females, suggesting sex differences in stress-activated circuits controlling mood and anxiety. Next, plasma estradiol and progesterone levels were correlated with cFOS counts in females. Negative correlations between estradiol and neuronal activation in the regions within the extended amygdala were found in CRF-treated, but not aCSF-treated females. This result suggests that estrogens and CRF together modulate the fear and anxiety responses mediated by these regions. Collectively, these studies reveal sex differences in the way brain regions work together in response to CRF. These differences could drive different stress coping strategies in males and females, perhaps contributing to sex biases in psychopathology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.