Abstract

Men and women can exhibit different pain sensitivities, and many chronic pain conditions are more prevalent in one sex. Although there is evidence of sex differences in the brain, it is not known whether there are sex differences in the organization of large-scale functional brain networks in chronic pain. Here, we used graph theory with modular analysis and machine-learning of resting-state-functional magnetic resonance imaging data from 220 participants: 155 healthy controls and 65 individuals with chronic low back pain due to ankylosing spondylitis, a form of arthritis. We found an extensive overlap in the graph partitions with the major brain intrinsic systems (ie, default mode, central, visual, and sensorimotor modules), but also sex-specific network topological characteristics in healthy people and those with chronic pain. People with chronic pain exhibited higher cross-network connectivity, and sex-specific nodal graph properties changes (ie, hub disruption), some of which were associated with the severity of the chronic pain condition. Females exhibited atypically higher functional segregation in the mid cingulate cortex and subgenual anterior cingulate cortex and lower connectivity in the network with the default mode and frontoparietal modules, whereas males exhibited stronger connectivity with the sensorimotor module. Classification models on nodal graph metrics could classify an individual's sex and whether they have chronic pain with high accuracies (77%-92%). These findings highlight the organizational abnormalities of resting-state-brain networks in people with chronic pain and provide a framework to consider sex-specific pain therapeutics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.