Abstract
What is the topic of this review? Changes in heart rate variability in rats with sex differences and the use of different anaesthesia during light-dark cycles. What advances does it highlight? The review highlights and discusses synthesized current results in order to advance knowledge and understanding of sex differences with an emphasis on changes in the autonomic nervous system determined by heart rate variability. Heart rate variability (HRV) is commonly used in experimental studies to assess sympathetic and parasympathetic activities. The belief that HRV in rodents reflects similar cardiovascular regulations in humans is supported by evidence, and HRV in rats appears to be at least analogous to that in humans, although the degree of influence of the parasympathetic division of the autonomic nervous system (ANS) may be greater in rats than in humans. Experimental studies are based on control or baseline values, on the basis of which the change in ANS activity after a given experimental intervention is assessed, but it is known that the ANS in rats is very sensitive to various stress interventions, such as the manipulation itself, and ANS activity can also differ depending on sex, the time of measurement, and whether the animals are under general anaesthesia. Thus, for correct assessment, changes in ANS activity and their relationship to the observed parameter should be based on whether ANS activity does or does not change but also to what extent the activity is already changed at the start of the experiment. Since rats are considered to be the most suitable model animal for basic cardiovascular research, in this review we point out existing differences in individual HRV frequency parameters at the start of experiments (control, baseline values), taking into account sex in relation to time of measurement and anaesthesia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.