Abstract

Recently the use of free fetal deoxyribonucleic acid (DNA) in maternal plasma and serum has been applicable for noninvasive prenatal genetic diagnosis. In this study, we applied a new algorithmic base conventional polymerase chain reaction (PCR) genotyping method and also real-time PCR for detecting fetal X and Y-chromosome sequences in maternal plasma to determine fetal sex in pregnant women in their early gestational ages (5-13 weeks). Finally, we compared the efficiency of each method in sex determination. DNA was extracted from 106 pregnant women and their husbands' blood samples. Fetus mini-short tandem repeat (STR) genotyping was accomplished through amplification of 19 mini-STRs and 3 non-STR markers using conventional PCR followed by polyacrylamide gel electrophoresis analysis. Simultaneously, TaqMan real-time PCR was done with the use of DYS14-specific primers and probe. In conventional PCR method, 47 cases were diagnosed to be male and 49 to be female. In comparison, real-time PCR amplified DYS14 (Y-marker) sequences in 45 pregnant women plasma samples. Sensitivity and specificity were calculated to be 95.9% and 98% for conventional PCR and 91.8% and 100% for real-time PCR method, respectively. According to our study, the conventional PCR method was more sensitive than real-time PCR and it could be employed in future clinical diagnostics singly or in combination with real-time PCR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call