Abstract
Sex determination and sexual development are highly diverse and controlled by mechanisms that are extremely labile. While dioecy (separate male and female functions) is the norm for most animals, hermaphroditism (both male and female functions within a single body) is phylogenetically widespread. Much of our current understanding of sexual development comes from a small number of model systems, limiting our ability to make broader conclusions about the evolution of sexual diversity. We present the calyptraeid gastropods as a model for the study of the evolution of sex determination in a sequentially hermaphroditic system. Calyptraeid gastropods, a group of sedentary, filter-feeding marine snails, are sequential hermaphrodites that change sex from male to female during their life span (protandry). This transition includes resorption of the penis and the elaboration of female genitalia, in addition to shifting from production of spermatocytes to oocytes. This transition is typically under environmental control and frequently mediated by social interactions. Males in contact with females delay sex change to transition at larger sizes, while isolated males transition more rapidly andat smaller sizes. This phenomenon has been known for over a century; however, the mechanisms that control the switch from male to female are poorly understood. We review here our current understanding of sexual development and sex determination in the calyptraeid gastropods and other molluscs, highlighting our current understanding of factors implicated in the timing of sex change and the potential mechanisms. We also consider the embryonic origins and earliest expression of the germ line and the effects of environmental contaminants on sexual development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.