Abstract

Antibiotics have been identified as obesogens contributing to the prevalence of obesity. Moreover, their environmental toxicity shows sex dependence, which might also explain the sex-dependent obesity observed. Yet, the direct evidence for such a connection and the underlying mechanisms remain to be explored. In this study, the effects of tetracycline, which is a representative antibiotic found in both environmental and food samples, on Drosophila melanogaster were studied with consideration of both sex and circadian rhythms (represented by the eclosion rhythm). Results showed that in morning-eclosed adults, tetracycline significantly stimulated the body weight of females (AM females) at 0.1, 1.0, 10.0 and 100.0 µg/L, while tetracycline only stimulated the body weight of males (AM males) at 1.0 µg/L. In the afternoon-eclosed adults, tetracycline significantly stimulated the body weight of females (PM females) at 0.1, 1.0 and 100.0 µg/L, while it showed more significant stimulation in males (PM males) at all concentrations. Notably, the stimulation levels were the greatest in PM males among all the adults. The results showed the clear sex dependence of the obesogenic effects, which was diminished by dysrhythmia. Further biochemical assays and clustering analysis suggested that the sex- and rhythm-dependent obesogenic effects resulted from the bias toward lipogenesis against lipolysis. Moreover, they were closely related to the preference for the energy storage forms of lactate and glucose and also to the presence of excessive insulin, with the involvement of glucolipid metabolism. Such relationships indicated potential bridges between the obesogenic effects of pollutants and other diseases, e.g., cancer and diabetes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call