Abstract

Exposure to stressors during puberty can disrupt normal development and possibly increase susceptibility to neurodegenerative disorders later in life. However, the mechanisms underlying the relationship between pubertal stress exposure and neurodegeneration remain unclear. As such, the current study was designed to examine the effects of pubertal antimicrobial (AMNS) and lipopolysaccharide (LPS) treatments on intestinal and blood-brain-barrier (BBB) permeability in male and female mice. Moreover, we also examined the sex-specific effects of pubertal AMNS and LPS treatments on gross motor activity, heart rate, and core body temperature. At four weeks of age, male and female CD1 mice were implanted with the G2 HR E-Mitter telemetry system. At five weeks of age, mice received 200 μL of broad-spectrum antimicrobial or water, through oral gavage, twice daily for seven days. Mice received an intraperitoneal injection of either saline or LPS at six weeks of age. BBB and intestinal permeability were examined 24 h, 72 h, and one week post-LPS/saline treatment. Telemetric data was collected for 48 h post-LPS/saline treatment. The results showed that pubertal AMNS and LPS treatments increased sickness behaviours and decreased body temperature and heart rate, in a sex-dependent manner. Furthermore, pubertal AMNS and LPS treatments resulted in sex-dependent regional increases in BBB permeability 24 h and 72 h post-LPS/saline treatment, while global increases in BBB permeability were only observed one week post-LPS/saline treatment. These results further our understanding of the combined effects of AMNS and LPS treatments on physiology and on the enduring negative changes observed following pubertal exposure to stressors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.