Abstract

Discus fish Symphysodon spp. employs an unusual parental care where fry feed on parental skin mucus after hatching. Here, we investigated the mucus metabolites of parental and non-parental discus by using non-targeted metabolomics. Statistical analysis of the skin mucus metabolome revealed sex-dependent changes of mucus between parental and non-parental discus, as well as sex-specific differences between parental fish. Differential metabolites reflected that mucus of both parents was rich in prostaglandin A1, but only male contained more oligosaccharides (gentiobiose and D-melezitose) and nucleotides (guanine and cytosine), and only female detected more thymine. Moreover, differential metabolites revealed the metabolic status of parental discus, including the inhibition of biosynthesis of amino acids, e.g., L-phenylalanine (parents), L-aspartic acid (female) and taurine (male) and the activation of metabolism of these amino acids; the increase of metabolism of fatty acids such as α-Linolenic acid (female), arachidonic acid (female) and linoleic acid (male); the perturbation of metabolism of carbohydrate and energy including starch and sucrose metabolism (parents), ascorbate and aldarate metabolism (parents), amino sugar and nucleotide sugar metabolism (female), pentose and glucuronate interconversions (male) and glyoxylate and dicarboxylate metabolism (male). These results might suggest sex-specific metabolic changes in the skin mucus of discus fish during parental care. SignificanceWe detected the low-molecular-weight compounds present in the parental mucus of discus fish evolving for offspring and revealed the possible metabolic changes associated with parental care. These results are helpful to gain further insights on the functional and regulatory aspects of skin mucus of discus during parental care.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call