Abstract

Chromosomes that determine sex are predicted to evolve differently than autosomes: a lack of recombination on one of the two sex chromosomes is predicted to allow an accumulation of deleterious alleles that eventually leads to reduced functionality and potential physical degradation of the nonrecombining chromosome. Because these changes should occur at an elevated evolutionary rate, it is difficult to find appropriate species in which to test these evolutionary predictions. The unique genetic sex-determining mechanism of the crustacean Eulimnadia texana prevents major chromosome degeneration because of expression of both 'proto-sex' (i.e. early stage of development) chromosomes in homozygous form (ZZ and WW). Herein, we exploit this unique genetic system to examine the predicted accumulation of deleterious alleles by comparing both homogametic sexual types to their heterogametic counterpart. We report differences in crossing over in a sex-linked region in the ZW hermaphrodites (approximately 3%) relative to the ZZ males (approximately 21%), indicative of cross-over suppression in the ZW hermaphrodites. Additionally, we report that both ZZ and WW genotypes have reduced fitness relative to ZW hermaphrodites, which is consistent with the prediction of harboured recessive mutations embedded on both the Z and the W chromosomes. These results suggest that the proto-sex chromosomes in E. texana accumulate recessive deleterious alleles. We hypothesize that recessive deleterious alleles of large effect cannot accumulate because of expression in both ZZ and WW individuals, keeping both chromosomes from losing significant function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call