Abstract

BackgroundThe discovery of differentially organized sex chromosome systems suggests that heteromorphic sex chromosomes evolved from a pair of homologous chromosomes. Whereas karyotypes are highly conserved in alethinophidian snakes, the degeneration status of the W chromosomes varies among species. The Z and W chromosomes are morphologically homomorphic in henophidian species, whereas in snakes belonging to caenophidian families the W chromosomes are highly degenerated. Snakes therefore are excellent animal models in which to study sex chromosome evolution. Herein, we investigated the differentiation processes for snake sex chromosomes using both coding and repetitive sequences. We analyzed phylogenetic relationships of CTNNB1 and WAC genes, localized to the centromeric and telomeric regions, respectively, of the long arms on snake sex chromosomes, and chromosome distribution of sex chromosome-linked repetitive sequences in several henophidian and caenophidian species.ResultsPartial or full-length coding sequences of CTNNB1 and WAC were identified for Z homologs of henophidian species from Tropidophiidae, Boidae, Cylindrophiidae, Xenopeltidae, and Pythonidae, and for Z and W homologs of caenophidian species from Acrochordidae, Viperidae, Elapidae, and Colubridae. Female-specific sequences for the two genes were not found in the henophidian (boid and pythonid) species examined. Phylogenetic trees constructed using each gene showed that the Z and W homologs of the caenophidian species cluster separately. The repetitive sequence isolated from the W chromosome heterochromatin of the colubrid Elaphe quadrivirgata and a microsatellite motif (AGAT)8 were strongly hybridized with W chromosomes of the viperid and colubrid species examined.ConclusionOur phylogenetic analyses suggest that the cessation of recombination between the Z and W homologs of CTNNB1 and WAC predated the diversification of the caenophidian families. As the repetitive sequences on the W chromosomes were shared among viperid and colubrid species, heterochromatinization of the proto-W chromosome appears to have occurred before the splitting of these two groups. These results collectively suggest that differentiation of the proto-Z and proto-W chromosomes extended to wide regions on the sex chromosomes in the common ancestor of caenophidian families during a relatively short period.Electronic supplementary materialThe online version of this article (doi:10.1186/s40851-016-0056-1) contains supplementary material, which is available to authorized users.

Highlights

  • The discovery of differentially organized sex chromosome systems suggests that heteromorphic sex chromosomes evolved from a pair of homologous chromosomes

  • Full-length cDNA of E. quadrivirgata CTNNB1 Z and W homologs and WW domain containing adaptor with coiled-coil (WAC) Z and W homologs were obtained by the rapid amplification of cDNA ends (RACE) method with specific primers for the Z and W homologs of each gene (Additional file 1), and the sequences were registered with the International Nucleotide Sequence Database Collaboration (INSDC) under the accession numbers shown in Additional file 5

  • We analyzed the molecular phylogeny of two gametologous genes, CTNNB1 and WAC, and chromosomal distributions of sex chromosome-linked repetitive sequences in several snake species

Read more

Summary

Introduction

The discovery of differentially organized sex chromosome systems suggests that heteromorphic sex chromosomes evolved from a pair of homologous chromosomes. We analyzed phylogenetic relationships of CTNNB1 and WAC genes, localized to the centromeric and telomeric regions, respectively, of the long arms on snake sex chromosomes, and chromosome distribution of sex chromosome-linked repetitive sequences in several henophidian and caenophidian species. Meiotic recombination between the proto-sex chromosomes could have been suppressed around the heterologous region to preserve the linkage of these sexually antagonistic genes. Such suppression may have been accelerated by structural changes in chromosomes (e.g., inversion). Suppression of recombination between the sex chromosomes favored the accumulation of repetitive DNA sequences on the non-recombining regions, increasing the extent of differentiation between sex chromosomes [5]. Blind snakes and thread snakes belong to the former and all other snakes belong to the latter (Fig. 1)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call