Abstract

The fossil record of marine animals suggests that diversity-dependent processes exerted strong control on biodiversification: after the Ordovician Radiation, genus richness did not trend for hundreds of millions of years. However, diversity subsequently rose dramatically in the Cretaceous and Cenozoic (145 million years ago-present), indicating that limits on diversification can be overcome by ecological or evolutionary change. Here, we show that the Cretaceous-Cenozoic radiation was driven by increased diversification in animals that transfer sperm between adults during fertilization, whereas animals that broadcast sperm into the water column have not changed significantly in richness since the Late Ordovician (∌450 million years ago). We argue that the former group radiated in part because directed sperm transfer permits smaller population sizes and additional modes of prezygotic isolation, as has been argued previously for the coincident radiation of angiosperms. Directed sperm transfer tends to co-occur with many ecological traits, such as a predatory lifestyle. Ecological specialization likely operated synergistically with mode of fertilization in driving the diversification that began during the Mesozoic marine revolution. Plausibly, the ultimate driver of diversification was an increase in food availability, but its effects on the fauna were regulated by fundamental reproductive and ecological traits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.