Abstract
The developmental effects of androgen play a central role in sexual differentiation of the mammalian central nervous system. The cellular mechanisms responsible for mediating these effects remain incompletely understood. A considerable amount of evidence has accumulated indicating that one of the earliest detectable events in the mechanism of sexual differentiation is a selective and permanent reduction in estrogen receptor concentrations in specific regions of the brain. Using quantitative autoradiographic methods, it has been possible to precisely map the regional distribution of estrogen receptors in the brains of male and female rats, as well as to study the development of sexual dimorphisms in receptor distribution. Despite previous data suggesting that the left and right sides of the brain may be differentially responsive to early androgen exposure, there is no significant right-left asymmetry in estrogen receptor distribution, in either sex. Significant sex differences in receptor density are, however, observed in several regions of the preoptic area, the bed nucleus of the stria terminalis and the ventromedial nucleus of the hypothalamus, particularly in its most rostral and caudal aspects. In the periventricular preoptic area of the female, highest estrogen receptor density occurs in the anteroventral periventricular region: binding in this region is reduced by approximately 50% in the male, as compared to the female. These data are consistent with the hypothesis that androgen-induced defeminization of feminine behavioral and neuroendocrine responses to estrogen may involve selective reductions in the estrogen sensitivity of critical components of the neural circuitry regulating these responses, mediated in part through a reduction in estrogen receptor biosynthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.