Abstract

Methamphetamine induces a greater neurodegenerative effect in male versus female mice. In order to investigate this sex difference we studied the involvement of Akt and extracellular signal-regulated kinase (ERK1/2) in methamphetamine toxicity as a function of time post-treatment (30 min, 1 and 3 days). Methamphetamine-induced decreases in dopamine concentrations and dopamine transporter (DAT) specific binding in the medial striatum were similar in female and male mice when evaluated 1 day post-methamphetamine (40 mg/kg). At 3 days post-methamphetamine, striatal dopamine concentration and DAT specific binding continued to decline in males, whereas females showed a recovery with increases in dopamine content and DAT specific binding in medial striatum at day 3 versus day 1 post-methamphetamine. The reduction in striatal vesicular monoamine transporter 2 specific binding observed at 1 and 3 days post-methamphetamine showed neither a sex- nor temporal-dependant effect. Under the present experimental conditions, methamphetamine treatments had modest effects on dopamine markers measured in the substantia nigra. Proteins assessed by Western blots showed similar reductions in both female and male mice for DAT proteins at 1 and 3 days post-methamphetamine. An increase in the phosphorylation of striatal Akt (after 1 day), glycogen synthase kinase 3β (at 1 and 3 days) and ERK1/2 (30 min post-methamphetamine) was only observed in females. Striatal glial fibrillary acidic protein levels were augmented in both females and males at 3 days post-methamphetamine. These results reveal some of the sex- and temporally-dependent effects of methamphetamine toxicity on dopaminergic markers and suggest some of the signaling pathways associated with these responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.