Abstract

Background and Objectives: For cannabis and other drugs of abuse, initial response and/or tolerance to drug effects can predict later dependence and problematic use. Our objective is to identify sex and genetic (strain) differences in initial response and rapid tolerance to Δ9–tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, between highly genetically divergent inbred mouse strains—C57BL/6J (B6) and DBA/2J (D2).Experimental Approach: Sex and strain responses relative to baseline were quantified following daily exposure (i.p.) to 10 mg/kg THC or vehicle (VEH) over the course of 5 days. Dependent measures included hypothermia (decreased body temperature) and ataxia (decreased spontaneous activity in the open field), and antinociception (increase in tail withdrawal latency to a thermal stimulus). Initial sensitivity to THC was defined as the difference in response between baseline and day 1. Rapid tolerance to THC was defined as the difference in response between days 1 and 2.Results: B6 exhibited greater THC-induced motor activity suppression and initial sensitivity to ataxia relative to the D2 strain. Females demonstrated greater levels of THC-induced hypothermia and initial sensitivity relative to males. Higher levels of THC-induced antinociception and initial sensitivity were observed for D2 relative to B6. Rapid tolerance to THC was observed for hypothermia and antinociception. Much less tolerance was observed for THC-induced ataxia. D2 exhibited rapid tolerance to THC-induced hypothermia and antinociception at time points associated with peak THC initial response. Likewise, at the peak initial THC response time point, females demonstrated greater levels of rapid tolerance to hypothermic effects relative to males.Conclusions: Both sex and genetic factors drive variation in initial response and rapid tolerance to the ataxic, antinociceptive, and hypothermic effects of THC. As these traits directly result from THC activation of the cannabinoid receptor 1, gene variants between B6 and D2 in cannabinoid signaling pathways are likely to mediate strain differences in response to THC.

Highlights

  • Cannabis is used by millions of individuals both legally and illegally in the United States and worldwide

  • Our objective is to identify sex and genetic differences in initial response and rapid tolerance to D9–tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, between highly genetically divergent inbred mouse strains—C57BL/6J (B6) and DBA/2J (D2)

  • We provide the first report of sex differences in the hypothermic response to THC and genetic differences in initial sensitivity and rapid tolerance to the ataxic and/or analgesic effects of THC

Read more

Summary

Introduction

Cannabis is used by millions of individuals both legally and illegally in the United States and worldwide. Results: B6 exhibited greater THC-induced motor activity suppression and initial sensitivity to ataxia relative to the D2 strain. Females demonstrated greater levels of THC-induced hypothermia and initial sensitivity relative to males. At the peak initial THC response time point, females demonstrated greater levels of rapid tolerance to hypothermic effects relative to males. Conclusions: Both sex and genetic factors drive variation in initial response and rapid tolerance to the ataxic, antinociceptive, and hypothermic effects of THC. As these traits directly result from THC activation of the cannabinoid receptor 1, gene variants between B6 and D2 in cannabinoid signaling pathways are likely to mediate strain differences in response to THC

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.