Abstract

Organisms ranging from bacteria and corals to plants and vertebrates can form intransitive competitive networks, in which coexistence can be maintained because no one species or genotype is superior to all others. However, in the simplest case with three competing types, the long-term outcome may not be so clear if two of the three represent the ends of a continuous heritable trait distribution within one species, as has been recently demonstrated empirically in a short-term experiment with plants. Using simulation models of this scenario, results with asexual reproduction confirm previous studies which showed that local interactions promote coexistence. However, with sexual reproduction, genetic variance is reduced because selection fluctuates between favouring the two extremes during population cycles, while sex continually produces intermediates. Sex thus slows the response to selection when it is the strongest and therefore slows the recovery from extreme abundances, creating larger abundance fluctuations. Local interactions do not stabilize dynamics with sex because the resultant spatial patches of one species are genetically heterogeneous, such that particular phenotypes do not benefit from spatial refuges. In sharp contrast to previous models suggesting that sex or local interactions stabilize population dynamics, here sex and local interactions destabilize dynamics and increase extinction risk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call