Abstract
Catch-and-release angling exposes fish to challenges that may result in sub-lethal effects or mortality. Lake trout (Salvelinus namaycush) undergo high rates of release because of size-based harvest regulations or voluntary angler behaviour. Here, we examine short-term impairment in lake trout angled during the summer (n = 74) and fall spawning period (n = 33) to inform best practices for angling. Immediately following capture or 0.5h post-capture, fish underwent reflex and barotrauma assessments, and a small blood sample was collected. Fish were also fitted with an externally mounted biologger equipped with depth, temperature and tri-axial acceleration sensors, that was tethered to allow retrieval of the logger after 14min. In the summer, reflex impairment and barotrauma at 0 and 0.5h were significantly correlated. Loss of orientation and bloating were the most observed indicators. Larger fish and those captured at increased depth had higher barotrauma scores, while prolonged fight times decreased the barotrauma score regardless of sampling time. Plasma cortisol, lactate and glucose increased 0.5h after capture, and extracellular and intracellular pH decreased, all signs that angling was inducing a metabolic response. However, no relationships were found between blood indices and mortality (18.9%). The time required to reach maximum depth after release was longer for fish with increased air exposure but shorter for those with longer fight times. During the fall, fish displayed no mortality or reflex impairment. Anal prolapse was the most observed indicator of barotrauma but only observed in females. Blood indices were most altered 0.5h after capture, with increased cortisol values for fish that were female, particularly large or captured at deeper depth. Locomotor activity was highest for males and increased with depth. Together, our findings suggest that the effects of catch-and-release angling may be dependent on several factors, including sex, season and angling depth.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.