Abstract

Sex differences in opioid analgesia occur in rodents and humans, and could be due to differences in drug and metabolite levels. Thus, we investigated the sex and cycle differences in analgesia (nociception) from oxycodone in rats and related these to sex and cycle differences in brain and plasma oxycodone and metabolite levels. Since numerous opioids are CYP2D enzyme substrates and variation in CYP2D alters opioid drug levels and response, we also initiated studies to see if the sex and cycle differences observed might be due to differences in brain CYP2D activity. Across oxycodone doses, females in diestrus had higher analgesia (using tail flick latency) compared to males and females in estrus; we also demonstrated a direct effect of estrous cycle on analgesia within females. Consistent with the analgesia, females in diestrus had highest brain oxycodone levels (assessed using microdialysis) compared to males and females in estrus. Analgesia correlated with brain oxycodone, but not brain oxymorphone or noroxycodone levels, or plasma drug or metabolite levels. Propranolol (a CYP2D mechanism-based inhibitor), versus vehicle pre-treatments, increased brain oxycodone, and decreased brain oxymorphone/oxycodone drug level ratios (an in vivo CYP2D activity phenotype in the brain) in males and females in estrus, but not in females in diestrus. Brain oxymorphone/oxycodone inversely correlated with analgesia. Together, both sex and estrous cycle impact oxycodone analgesia and brain oxycodone levels, likely through regulation of brain CYP2D oxycodone metabolism. As CYP2D6 is expressed in human brain, perhaps similar sex and cycle influences also occur in humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call