Abstract

Sex hormones can affect cellular physiology and modulate synaptic plasticity, but it is not always clear whether or how sex-dependent differences identified in vitro express themselves as functional dimorphisms in the brain. Historically, most experimental neuroscience has been conducted using only male animals and the literature is largely mute about whether including female mice in will introduce variability due to inherent sex differences or endogenous estrous cycles. Though this is beginning to change following an NIH directive that sex should be included as a factor in vertebrate research, the lack of information raises practical issues around how to design experimental controls and apply existing knowledge to more heterogeneous populations. Various lines of research suggest that visual processing can be affected by sex and estrous cycle stage. For these reasons, we performed a series of in vivo electrophysiological experiments to characterize baseline visual function and experience-dependent plasticity in the primary visual cortex (V1) of male and female mice. We find that sex and estrous stage have no statistically significant effect on baseline acuity measurements, but that both sex and estrous stage have can modulate two mechanistically distinct forms of experience dependent cortical plasticity. We also demonstrate that resulting variability can be largely controlled with appropriate normalizations. These findings suggest that V1 plasticity can be used for mechanistic studies focusing on how sex hormones effect experience dependent plasticity in the mammalian cortex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.