Abstract
Γ-hydroxybutyric acid (GHB) is widely abused due to its sedative/hypnotic and euphoric effects. In recent years, GHB use has witnessed a notable rise within the LGBTQ+ community. GHB is a substrate of monocarboxylate transporters (MCTs) and exhibits nonlinear toxicokinetics, characterized by saturable metabolism, absorption, and renal reabsorption. This study investigates the impact of exogenous testosterone administration on GHB toxicokinetics and toxicodynamics, exploring the potential of MCT1 inhibition as a strategy to counteract toxicity. Ovariectomized (OVX) females and castrated (CST) male Sprague Dawley rats were treated with testosterone or placebo for 21 days. GHB was administered at two doses (1000 mg/kg or 1500 mg/kg i.v.), and the MCT1 inhibitor AR-C 155858 (1 mg/kg i.v.) was administered 5 min after GHB (1500 mg/kg i.v.) administration. Plasma and urine were collected up to 8 h post-dose, and GHB concentrations were quantified via a validated LC/MS/MS assay. Sleep time (sedative/hypnotic effect) was utilized as the toxicodynamic endpoint. Testosterone treatment significantly affected GHB toxicokinetics and toxicodynamics. Testosterone-treated CST rats exhibited significantly lower renal clearance, higher AUC, and increased sedative effect, while testosterone-treated OVX rats demonstrated higher metabolic clearance. AR-C 155858 treatment led to an increase in GHB renal and total clearance together with an improvement in sedative/hypnotic effect. In conclusion, exogenous testosterone treatment induces significant alterations in GHB toxicokinetics and toxicodynamics, and MCT inhibition can serve as a potential therapeutic strategy for GHB overdose in both cisgender and transgender male populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.