Abstract

Females show greater benefits of exercise on cognition in both humans and rodents, which may be related to brain-derived neurotrophic factor (BDNF). A single nucleotide polymorphism (SNP), the Val66Met polymorphism, within the human BDNF gene, causes impaired activity-dependent secretion of neuronal BDNF and impairments to some forms of memory. We evaluated whether sex and BDNF genotype (Val66Met polymorphism (Met/Met) versus wild-type (Val/Val)) influenced the ability of voluntary running to enhance cognition and hippocampal neurogenesis in mice. Middle-aged C57BL/6J (13 months) mice were randomly assigned to either a control or an aerobic training (AT) group (running disk access). Mice were trained on the visual discrimination and reversal paradigm in a touchscreen-based technology to evaluate cognitive flexibility. BDNF Met/Met mice had fewer correct responses compared to BDNF Val/Val mice on both cognitive tasks. Female BDNF Val/Val mice showed greater cognitive flexibility compared to male mice regardless of AT. Despite running less than BDNF Val/Val mice, AT improved performance in both cognitive tasks in BDNF Met/Met mice. AT increased neurogenesis in the ventral hippocampus of BDNF Val/Val mice of both sexes and increased the proportion of mature type 3 doublecortin-expressing cells in the dorsal hippocampus of female mice only. Our results indicate AT improved cognitive performance in BDNF Met/Met mice and increased hippocampal neurogenesis in BDNF Val/Val mice in middle age. Furthermore, middle-aged female mice may benefit more from AT than males in terms of neuroplasticity, an effect that was influenced by the BDNF Val66Met polymorphism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call