Abstract

Skin aging is of immense societal and, thus, scientific interest. Because mechanics play a critical role in skin's function, a plethora of studies have investigated age-induced changes in skin mechanics. Nonetheless, much remains to be learned about the mechanics of aging skin. This is especially true when considering sex as a biological variable. In our work, we set out to answer some of these questions using mice as a model system. Specifically, we combined mechanical testing, histology, collagen assays, and two-photon microscopy to identify age- and sex-dependent changes in skin mechanics and to relate them to structural, microstructural, and compositional factors. Our work revealed that skin stiffness, thickness, and collagen content all decreased with age and were sex dependent. Interestingly, sex differences in stiffness were age induced. We hope our findings not only further our fundamental understanding of skin aging but also highlight both age and sex as important variables when conducting studies on skin mechanics. Statement of significanceOur work addresses the question, “How do sex and age affect the mechanics of skin?” Answering this question is of both scientific and societal importance. We do so in mice as a model system. Thereby, we hope to add clarity to a body of literature that appears divided on the effect of both factors. Our findings have important implications for those studying age and sex differences, especially in mice as a model system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.