Abstract

AbstractQuarry restoration in Mediterranean environments usually needs organic amendments to improve the substrates used for technosol construction. Digested sewage sludges from municipal wastewater treatment plants are rich in organic matter, N, and P and constitute an available and economically interesting alternative for substrate amendment. However, their pollutant burden and labile organic matter content involve an environmental risk that must be controlled. Moreover, ecological succession in restored areas can be influenced by the use of sludge and should be assessed. To minimize these risks, a new sewage sludge dose criterion relating to its labile organic matter and heavy metal content has been established. Sewage sludge doses currently range between 10 and 50 Mg ha−1. In order to verify the suitability of this dose criterion, 16 areas rehabilitated using sewage sludge located in limestone quarries in a Mediterranean climate in Catalonia (NE Spain) have been assessed. These evaluations focused on physicochemical properties of rehabilitated soils, land degradation processes, and ecological succession. In the short term, 6 months after sludge application, an increment of organic matter content in the restored soils was observed, without significant increases in electrical conductivity or heavy metals content, and with a dense plant cover that contributes to effective soil erosion control. Two years after, ruderal plants were still present but later successional species colonized the restored zones in different degrees. These results suggest that sewage sludge, used as a soil amendment according to the proposed methodology, can safely improve technosol quality without constraints that compromise ecological succession.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call