Abstract
Treatment of municipal wastewater results worldwide in the production of large amounts of sewage sludge. The major part of the dry matter content of this sludge consists of nontoxic organic compounds, in general a combination of primary sludge and secondary (microbiological) sludge. The sludge also contains a substantial amount of inorganic material and a small amount of toxic components. There are many sludge-management options in which production of energy (heat, electricity, or biofuel) is one of the key treatment steps. The most important options are anaerobic digestion, co-digestion, incineration in combination with energy recovery, co-incineration in coal-fired power plants, co-incineration in combination with organic waste focused on energy recovery, use as an energy source in the production of cement or building materials, pyrolysis, gasification, supercritical (wet) oxidation, hydrolysis at high temperature, production of hydrogen, acetone, butanol, or ethanol, and direct generation of electrical energy by means of specific micro-organisms. Incineration and co-incineration with energy recovery and use of sewage sludge in the production of Portland cement are applied on a large scale. In these processes, the toxic organics are destructed and the heavy metals are immobilized in the ash or cement. The energy efficiency of these processes strongly depends upon the dewatering and drying step. It is expected that these applications will strongly increase in the future. Supercritical wet oxidation is a promising innovative technology but is still in the development stage. With the exception of biogas production, the other biological methods to produce energy are still in the initial research phase. Production of biogas from sewage sludge is already applied worldwide on small, medium, and large scales. With this process, a substantial experience exists and it is expected that this application is getting more and more attention. Besides the increasing focus on the recovery and reuse of energy, inorganics, and phosphorous, there is also an increasing focus to solve completely the problem of the toxic organics and inorganic compounds in sludge. In the assessment and selection of options for energy recovery by means of biological methods, this aspect has to be taken into account.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.