Abstract

Conventional wastewater treatment plants (WWTPs) present low phosphorus (P) removal capacity. Conversely, water treatment plants (WTPs) produce sludge with great P sorption from wastewater; however, directly adding the sludge into the wastewater treatment system could increase the effluent turbidity. As a novel approach, the present study evaluated the performance of WTP sludge within paper sachets for P removal from treated sewage. Different sludge concentrations (2-30 g L-1) and contact times (1-27 d) were applied to treat sewage from a university WWTP outlet. The sludge was characterized by P, Fe, and Al content. Larger sludge masses showed higher P removal efficiencies due to their high Fe content, especially at longer contact times (up to 100% at the final of the experiment). However, there is a more significant P reduction in the first 10 d (more than 90% in the most efficient treatment - 30 mg L-1). Based on the kinetic and isotherm analyses and the sludge chemical composition, precipitation proved to be a mechanism of great importance in P removal. Therefore, WTP sludge sachets can be a promising way to remove P from sewage, and the formed solid waste might be reused as an alternative fertilizer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.