Abstract

Anesthesia with sevoflurane is accompanied by vasodilatation. This could be due to the effects of sevoflurane on endothelium-dependent relaxation. We measured muscle tension of isolated human omental arteries and veins in response to substance P or glyceryl trinitrate in the presence of sevoflurane (0%, 1%, 2%, or 4%). Vascular levels of guanosine 3', 5'-cyclic monophosphate were measured with enzyme-linked immunosorbent assay. Substance P induced an endothelium- and concentration-dependent relaxation in omental vessels that was not affected by sevoflurane. In the presence of L-N(G)-nitroarginine methyl ester (nitric oxide synthase inhibitor), KCl (prevention of hyperpolarization), or both, sevoflurane at 4% enhanced the relaxation in the arteries (P < 0.05). In the vein segments, the relaxation was enhanced by sevoflurane at 4% in the presence of KCl and 2% and 4% in the presence of both L-N(G)-nitroarginine methyl ester and KCl (P < 0.05). The glyceryl trinitrate-induced endothelium-independent relaxation was enhanced by sevoflurane at 4% in both artery and vein segments (P < 0.05). Substance P increased the levels of guanosine 3', 5'-cyclic monophosphate similarly in the presence and absence of sevoflurane. These results show that sevoflurane, in contrast to its effect in animal models, promotes endothelium-dependent relaxation in human omental arteries and veins via an enhancement of the smooth muscle response to relaxing second messengers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.