Abstract

BackgroundSevoflurane as a widely used inhalational general anesthetic that also has a cardioprotective role in hypoxia-reoxygenation (H/R) injury. This study aimed to investigate the effects of microRNA-107 (miR-107) on sevoflurane postconditioning (SpostC) in H9C2 embryonic rat cardiomyocytes and to use bioinformatics analysis to identify the molecular basis of cardioprotection from sevoflurane in human cardiac tissue.Material/MethodsThe STRADA gene was identified from the Gene Expression Omnibus (GEO) database. H9C2 embryonic rat cardiomyocytes were cultured with sevoflurane. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were used to measure the mRNA expression and protein expression of STRADA and miR-107 in H9C2 cells. TargetScanHuman version 7.2 was used to identify the target gene of miR-107 and to predict the STRADA 3′-UTR binding site of miR-107. The dual-luciferase reporter assay measured the relative luciferase activity. The cell proliferation rate and cell apoptosis were measured using the MTT assay and flow cytometry, respectively.ResultsH/R injury in H9C2 cells following SpostC resulted in increased expression of miR-107 and reduced expression of STRADA. Specific binding of miR-107 was identified to STRADA 3′-UTR. Upregulation of the miR-107 in SpostC H/R injured H9C2 cells promoted cell proliferation, reduced cell apoptosis, and downregulating the protein expression of caspase-3. STRADA overexpression reduced the effects of a miR-107 mimic on SpostC.ConclusionsSpostC reduced H/R injury in H9C2 embryonic rat cardiomyocytes by targeting the STRADA gene and by upregulating the expression of microRNA-107.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call