Abstract

Sevoflurane is a volatile anesthetic agent that reduces cerebral metabolism and thereby may reduce neuronal damage during energy deprivation. We have examined the effect of sevoflurane on hypoxic neuronal damage in rat hippocampal slices. Slices were subjected to 0%, 2%, or 4% sevoflurane 10 minutes before, during, and 10 minutes after hypoxia. The Schaffer collateral pathway was stimulated every 10 seconds and the evoked population spike recorded in the CA1 pyramidal cell region throughout the experiment. During hypoxia, the postsynaptic evoked response was blocked. The time until the blockade of this response in the 0% sevoflurane group was 158 seconds. Sevoflurane (4%) significantly delayed the loss of the evoked response during hypoxia (242 seconds). The percent recovery of the postsynaptic population spike was calculated by dividing the size of the response 120 minutes after hypoxia by its prehypoxic, presevoflurane amplitude. There was no recovery of the population spike in the 0% sevoflurane group 120 minutes after the end of 5 minutes of hypoxia (6 +/- 6%); there was significantly better recovery after 5 minutes of hypoxia in the sevoflurane (4%) treated group (40 +/- 9%). A lower concentration of sevoflurane (2%) delayed the loss of evoked response during hypoxia (191 seconds), but it did not significantly affect recovery of the population spike after hypoxia (7 +/- 7%). Hypoxia irreversibly damages electrophysiologic activity. A high, but clinically usable, concentration of sevoflurane increases the time during hypoxia until the postsynaptic evoked response is blocked and improves recovery of this response after 5 minutes of hypoxia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.