Abstract

Bullous pemphigoid, the most common autoimmune subepidermal bullous disorder, is associated with autoantibodies targeting antigenic sites clustered within the extracellular domain of BP180. To investigate epitope and subclass specificity of autoantibodies in bullous pemphigoid, we developed an enzyme-linked immunosorbent assay utilizing baculovirus-expressed recombinant forms of the NH2- and COOH-terminal regions of the extracellular domain of BP180 and examined sera obtained from patients with active bullous pemphigoid (n=116) and controls (n=100). Ninety-three (80%) and 54 (47%) of the 116 bullous pemphigoid sera recognized the NH2- and COOH-terminal regions, respectively, of the extracellular domain of BP180. Detailed analysis demonstrates that (i) this novel enzyme-linked immunosorbent assay is highly specific (98%) and sensitive (93%) as 108 of 116 bullous pemphigoid sera reacted with at least one of the baculovirus-derived recombinants, (ii) in active bullous pemphigoid, autoantibodies against the NH2-terminus of the extracellular domain of BP180 were predominantly of the IgG1 class, whereas a dual IgG1 and IgG4 response to this region was related to a more severe skin involvement, (iii) autoreactivity against both the NH2- and COOH-terminal regions was more frequently detected in patients with mucosal lesions, and (iv) levels of IgG (and IgG1) against the NH2-terminal, but not against the COOH-terminal portion of the extracellular domain of BP180, reflected disease severity indicating that autoantibodies against the NH2-terminus are critical in the pathogenesis of bullous pemphigoid. In conclusion, this novel enzyme-linked immunosorbent assay represents a highly sensitive and specific assay for rapid diagnosis of bullous pemphigoid and related disorders and may provide predictive parameters for the management of bullous pemphigoid patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call