Abstract

Dry sliding wear behaviors of Ti–6Al–4V and Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloys (code-named TC4 and TC11, respectively) against AISI 52100 steel under a load of 50–250 N at 25–600 °C were systematically investigated. For two titanium alloys, a severe-to-mild wear transition occurred with an increase in temperature. The critical transition temperatures of TC4 and TC11 alloys were 400 and 300 °C, respectively. Below the critical temperature, titanium alloys showed poor wear performance. As the temperature surpassed the critical temperature, the extremely low wear rates demonstrated excellent elevated-temperature wear performance of titanium alloys in the titanium alloy/steel tribo-system. The wear transition was characterized with the appearance of continuous, hard tribo-layer containing more oxides, especially Fe2O3, which showed a pronounced wear-reduced role. Adhesive and abrasive wear predominated in the severe wear regime; oxidative mild wear prevailed in the mild wear regime. Adhesive wear, abrasive wear and oxidative mild wear cooperated at the critical transition temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call