Abstract

The spatial and temporal distributions of the carbon monoxide (CO) concentration were calculated with the Regional Atmospheric Modeling System and Hybrid Particle and Concentration Transport model (RAMS/HYPACT) in the provinces near Moscow during the abnormally hot summer of 2010. The forest, steppe and meadow hot spots were defined by the satellite data MCD14ML (MODIS Terra and Aqua satellite data). The calculations indicated that the surface CO concentrations from the model were two times less than the experimental data obtained from the Moscow State University (MSU) station and Zvenigorod Scientific Station (ZSS). Conversely, the total column CO concentrations obtained from the model were two to three times larger than the experimental values obtained from the Obukhov Institute of Atmospheric Physics (OIAP) and ZSS stations. The vertical transfer of pollutants was overestimated. Tentatively, it could be assumed that an aerosol influence in the model calculations is a reason for the overestimation. The comparisons between the wind speed, temperature and humidity profiles calculated in the model with the data from the standard balloon sounding exhibited good agreement. The CO total column data of the Measurements of Pollution in the Troposphere (MOPITTv5 NIR and TIR/NIR) obtained from the OIAP and ZSS stations appear more realistic than do the MOPITTv4 data. However, the surface MOPITT values of CO concentration for Moscow have the large distinction from the ground measurements. A careful proposal regarding satellite orbit optimization was made, which could improve future spectrometric measurements, such as the MOPITT, Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) measurements.

Highlights

  • The abnormally hot summer of 2010 in European part of Russia was characterized by the extended absence of precipitation

  • The quality of the Regional Atmospheric Modeling System (RAMS) meteorological fields was estimated by comparison to the meridional and zonal winds

  • We compared the RAMS meteorological field parameters to balloon data for the entire hot summer period, but, we will focus on launches at 00:00 and 12:00 UTC on 5 August 2010, and 7 August 2010

Read more

Summary

Introduction

The abnormally hot summer of 2010 in European part of Russia was characterized by the extended absence of precipitation. This drought led to a reduction of water fractions in grassland and tree leaves. Lichen and grassland vegetation leads to favorable conditions for the rise and fast propagation of bottom wildfires in forests and in grassland. A bottom wildfire becomes a surface peat fire, and it becomes an underground peat fire near tree roots and stems, see [1,2]. It is worth noting that peat fires have occurred regularly in the Moscow region; for example, peat fires were reported in the summer of 2002 (e.g., [3,4])

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.