Abstract

Oxidative stress arises from excessive reactive oxygen species (ROS) and affects organisms of all three domains of life. Here we present a previously unknown pathway through which ROS may impact faithful protein synthesis. Aminoacyl-tRNA synthetases are key enzymes in the translation of the genetic code; they attach the correct amino acid to each tRNA species and hydrolyze an incorrectly attached amino acid in a process called editing. We show both in vitro and in vivo in Escherichia coli that ROS reduced the overall translational fidelity by impairing the editing activity of threonyl-tRNA synthetase. Hydrogen peroxide oxidized cysteine182 residue critical for editing, leading to Ser-tRNA(Thr) formation and protein mistranslation that impaired growth of Escherichia coli. The presence of major heat shock proteases was required to allow cell growth in medium containing serine and hydrogen peroxide; this suggests that the mistranslated proteins were misfolded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call