Abstract

Metallosis is an unusual but consequential complication arising from orthopedic hardware implantation, characterized by the deposition of metallic particles in the periprosthetic soft tissues. The incidence of metallosis associated with shoulder arthroplasties is exceptionally rare since the shoulder is not a weight-bearing joint, making it less susceptible to mechanical wear and, consequently, to conditions like particle disease and metallosis. Nevertheless, anomalous metal-on-metal interactions can develop in total shoulder arthroplasties if the polyethylene component fails due to wear, fracture, or dissociation. If left unaddressed, metallosis can incite an adverse immune-mediated local tissue response, culminating in joint destruction and adjacent soft tissues and muscle necrosis.In this case report, the diagnosis of metallosis was made in a patient with an anatomic total shoulder arthroplasty using a state-of-the-art photon counting detector CT supplemented by post-processing metal artifact reduction algorithms. This advanced imaging approach was effective in discerning the source of implant failure and in identifying manifestations of severe metallosis including osteolysis and pseudotumor formation. Advanced imaging methods can accurately characterize the severity and extent of metallosis, thereby helping guide surgical planning to mitigate serious complications associated with this condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call