Abstract

Physiological responses to +Gz stress have been reported in several studies. However, no reports exist on differences in arterial pressure responses between increasing and decreasing G phases. We hypothesized that +Gz stress and/or an anti-G support might disturb the circulation system and cause potential brain hypoperfusion, even if the anti-G support protects against G-induced loss of consciousness. Dependency of +Gz magnitude, hemodynamic changes, renal sympathetic nerve activity (RSNA), and aortic blood flow (AoBF) were estimated in anesthetized rats to analyze the effects of +Gz stress and/or an anti-G support on arterial pressure at a level of the brain (APLB). The rats were exposed to +Gz using a centrifuge for small animals while wearing an anti-G suit. APLB remained at the control level while the anti-G suit was inflated. However, a decrease in APLB was observed twice during increasing and decreasing G phases using the anti-G suit. Hypotension in the decreasing C phase at +5 Gz was significantly deeper than that in the increasing G phase (47.5 +/- 7.7 vs. 29.6 +/- 3.0 mmHg). RSNA responses to Gz loads were greater in the decreasing G than in the increasing G phase (129.7 +/- 8.6 vs. 147.3 +/- 10.4%). Both AoBF and calculated vascular resistance were suppressed more significantly in the decreasing G than in the increasing G phase (38.3 +/- 4.4 vs. 34.4 +/- 3.4 ml x min(-1), 1.44 +/- 0.22 vs. 1.09 +/- 0.14 mmHg x min(-1) x ml(-1)). We conclude that transient excessive decreasing G hypotension may occur during the decreasing G phase, which may be due to anti-G suit functioning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call