Abstract

With several cardiovascular pathologies associated with osmotic perturbations, researchers are in pursuit of identifying the signaling sensors, mediators and effectors involved, aiming at formulating novel diagnostic and therapeutic strategies. In the present study, H9c2 cells were treated with 0.5 M sorbitol to elicit hyperosmotic stress. Immunoblotting as well as cell viability analyses revealed the simultaneous but independent triggering of multiple signaling pathways. In particular, our findings demonstrated the phosphorylation of eukaryotic translation initiation factor 2 (eIF2α) and upregulation of the immunoglobulin heavy-chain-binding protein (BiP) expression, indicating the onset of the Integrated Stress Response (IRS) and endoplasmic reticulum stress (ERS), respectively. In addition, autophagy was also induced, evidenced by the enhancement of Beclin-1 protein expression and of AMP-dependent kinase (AMPK) and Raptor phosphorylation levels. The involvement of a Na+/H+ exchanger-1 (NHE-1) as well as NADPH oxidase (Nox) in 0.5 M sorbitol-induced eIF2α phosphorylation was also indicated. Of note, while inhibition of ERS partially alleviated the detrimental effect of 0.5 M sorbitol on H9c2 cellular viability, attenuation of p38-MAPK activity and late phase autophagy further mitigated it. Deciphering the mode of these pathways’ potential interactions and of their complications may contribute to the quest for effective clinical interventions against associated cardiovascular diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call