Abstract
Heavy ions have a unique efficacy for tumor control in radiotherapy. To clarify the effects of heavy-ion beams on hematopoietic stem/progenitor cells, the effects of carbon-ion beams on megakaryocytopoiesis and thrombopoiesis in CD34(+) cells derived from human placental and umbilical cord blood were investigated. The cells were exposed to carbon-ion beams (LET = 50 keV/microm) and then were treated with thrombopoietin (TPO) alone or TPO plus other cytokines. Megakaryocytic progenitor cells, such as megakaryocyte colony-forming units (CFU-Meg), were far more sensitive to carbon-ion beams than to X rays, and no restoration of carbon-ion beam-irradiated CFU-Meg by treatment with any cytokine combination was observed. However, total cell expansion in liquid culture was not different after either carbon-ion beam or X irradiation of CD34(+) cells. The activation of gamma-H2AX, a marker of DNA double strand-breaks (DSBs), was promoted by the cytokine treatment in X-irradiated CD34(+) cells but not in carbon-ion-irradiated cells. These results showed that carbon-ion beams inflicted severe damage on megakaryocytopoiesis and thrombopoiesis and that a better combination of cytokines and other agents may be needed to stimulate the recovery of hematopoietic cells and repair this damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.