Abstract
The corrosion behavior of Fe78Si9B13 glassy ribbons in 0.3M NaCl+0.06M NaOH solution under magnetic field has been studied by immersion and electrochemical tests such as electrochemical impedance spectroscopy (EIS) technique and polarization scanning, and the corroded morphology and products of ribbons have been measured by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS). It is found that the added magnetic field induces a severe corrosion behavior of the Fe-based glassy ribbons despite being in immersion or electrochemical corrosion, reflecting in a larger corrosion rate and a lower pitting potential. In addition, the magnetic field can decrease the charge transfer resistance (Rt) in the equivalent circuit of the electrochemical reaction, can trigger the occurrence of filiform corrosion and cracks, and can hinder the formation of silicon dioxide on the sample surface. The severe electrochemical corrosion of Fe-based glass alloy under magnetic field is explained by the effects of magnetohydrodynamic (MHD).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.