Abstract

Autosomal dominant gain-of-function mutations in human stimulator of interferon genes (STING) lead to a severe autoinflammatory disease called STING-associated vasculopathy with onset in infancy that is associated with enhanced expression of interferon-stimulated gene transcripts. The goal of this study was to analyze the phenotype of a new mouse model of STING hyperactivation and the role of type I interferons in this system. We generated a knock-in model carrying an amino acid substitution (V154M) in mouse STING, corresponding to a recurrent mutation seen in human patients with STING-associated vasculopathy with onset in infancy. Hematopoietic development and tissue histology were analyzed. Lymphocyte activation and proliferation were assessed invitro. STING V154M/wild-type (WT) mice were crossed to IFN-α/β receptor (IFNAR) knockout mice to evaluate the type I interferon dependence of the mutant Sting phenotype recorded. In STING V154M/WT mice we detected variable expression of inflammatory infiltrates in the lungs and kidneys. These mice showed a marked decrease in survival and developed a severe combined immunodeficiency disease (SCID) affecting B, T, and natural killer cells, with an almost complete lack of antibodies and a significant expansion of monocytes and granulocytes. The blockade in B- and T-cell development was present from early immature stages in bone marrow and thymus. In addition, invitro experiments revealed an intrinsic proliferative defect of mature T cells. Although the V154M/WT mutant demonstrated increased expression of interferon-stimulated genes, the SCID phenotype was not reversed in STING V154M/WT IFNAR knockout mice. However, the antiproliferative defect in T cells was rescued partially by IFNAR deficiency. STING gain-of-function mice developed an interferon-independent SCID phenotype with a T-cell, B-cell, and natural killer cell developmental defect and hypogammaglobulinemia that is associated with signs of inflammation in lungs and kidneys. Only the intrinsic proliferative defect of T cells was partially interferon dependent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.