Abstract
In the present work, we address the question of how bipartite steering violation takes place among multi-partite systems (where each sub-system have Hilbert space dimension restricted to two) based on the maximal violations of the bipartite steering inequality of the reduced pairwise qubit systems. We have derived a trade-off relation which is satisfied by those pairwise bipartite maximal steering violations, which physically can be understood as providing restrictions on the distribution of steering among subsystems. For a three-qubit system, it is impossible that all pairs of qubits violate the steering inequality, and once a pair of qubits violates the steering inequality maximally, the other two pairs of qubits must both obey the steering inequality. We also present a complementarity relation between genuine entanglement present in a tripartite state and maximum bipartite steering violation by its reduced states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.