Abstract

A genetic code, the mapping from trinucleotide codons to amino acids, can be viewed as a partition on the set of 64 codons. A small set of non-standard genetic codes is known, and these codes can be mathematically compared by their partitions of the codon set. To measure distances between set partitions, this study defines a parameterised family of metric functions that includes Shannon entropy as a special case. Distances were computed for 17 curated genetic codes using four members of the metric function family. With these metric functions, nuclear genetic codes had relatively small inter-code distances, while mitochondrial codes exhibited greater variance. Hierarchical clustering using Ward's algorithm produced a tight grouping of nuclear codes and several distinct clades of mitochondrial codes. This family of functions may be employed in other biological applications involving set partitions, such as analysis of microarray data, gene set enrichment and protein-protein interaction mapping.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call