Abstract

In this paper, we develop a novel method to construct Goethals–Seidel (GS) sequences with special structures. In the existing methods, utilizing Turyn sequences is an effective and convenient approach; however, this method cannot cover all GS sequences. Motivated by this, we are devoted to designing some sequences that can potentially construct all GS sequences. Firstly, it is proven that a quad of ±1 polynomials can be considered a linear combination of eight polynomials with coefficients uniquely belonging to {0,±1}. Based on this fact, we change the construction of a quad of Goethals–Seidel sequences to find eight sequences consisting of 0 and ±1. One more motivation is to obtain these sequences more efficiently. To this end, we make use of the k-block, of which some properties of (anti) symmetry are discussed. After this, we can then look for the sequences with the help of computers since the symmetry properties facilitate reducing the search range. Moreover, we find that one of the eight blocks, which we utilize to construct GS sequences directly, can also be combined with Williamson sequences to generate GS sequences with more order. Several examples are provided to verify the theoretical results. The main contribution of this work is in building a bridge linking the GS sequences and eight polynomials, and the paper also provides a novel insight through which to consider the existence of GS sequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.