Abstract
The truncated Bernoulli-Carlitz numbers and the truncated Cauchy-Carlitz numbers are defined as analogues of hypergeometric Bernoulli numbers and hypergeometric Cauchy numbers, and as extensions of Bernoulli-Carlitz numbers and the Cauchy-Carlitz numbers. These numbers can be expressed explicitly in terms of incomplete Stirling-Carlitz numbers. In this paper, we give several expressions of truncated Bernoulli-Carlitz numbers and truncated Cauchy-Carlitz numbers as natural extensions. One kind of expressions is in continued fractions. Another is in determinants originated in Glaisher, giving several interesting determinant expressions of numbers, including Bernoulli and Cauchy numbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.