Abstract

We obtain closed-form exact solutions to the 1+1 Born–Infeld equation arising in nonlinear electrodynamics. In particular, we obtain general traveling wave solutions of one wave variable, solutions of two wave variables, similarity solutions, multiplicatively separable solutions, and additively separable solutions. Then, putting the Born–Infeld model into correspondence with the minimal surface equation using a Wick rotation, we are able to construct complex helicoid solutions, transformed catenoid solutions, and complex analogues of Scherk’s first and second surfaces. Some of the obtained solutions are new, whereas others are generalizations of solutions in the literature. These exact solutions demonstrate the fact that solutions to the Born–Infeld model can exhibit a variety of behaviors. Exploiting the integrability of the Born–Infeld equation, the solutions are constructed elegantly, without the need for complicated analytical algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.