Abstract
Hoogstraal and Kim (1985) proposed from morphology, three groups of Haemaphysalis subgenera: (i) the “structurally advanced”; (ii) the “structurally intermediate”; and (iii) the “structurally primitive” subgenera. Nuclear gene phylogenies, however, did not indicate monophyly of these morphological groups but alas, only two mitochondrial (mt) genomes from the “structurally intermediate” subgenera had been sequenced. The phylogeny of Haemaphysalis has not yet been resolved. We aimed to resolve the phylogeny of the genus Haemaphysalis, with respect to the subgenus Alloceraea. We presented 15 newly sequenced and annotated mt genomes from 15 species of ticks, five species of which have not been sequenced before, and four new 18S rRNA and 28S rRNA nuclear gene sequences. Our datasets were constructed from 10 mt protein-coding genes, cox1, and the 18S and 28S nuclear rRNA genes. We found a 132-bp insertion between tRNA-Glu (E) gene and the nad1 gene in the mt genome of Haemaphysalis (Alloceraea) inermis that resembles insertions in H. (Alloceraea) kitaokai and Rhipicephalus (Boophilus) geigyi. Our mt phylogenies had the three species of Amblyomma (Aponomma) we sequenced embedded in the main clade of Amblyomma: Am. (Aponomma) fimbriatum, Am. (Aponomma) gervaisi and Am. (Aponomma) latum. This is further support for the hypothesis that the evolution of eyes appears to have occurred in the most-recent-common-ancestor of Amblyocephalus (i.e. Amblyomminae plus Rhipicephalinae) and that eyes were subsequently lost in the most-recent-common-ancestor of the subgenus Am. (Aponomma). Either Africaniella transversale or Robertsicus elaphensis, or perhaps Af. transversale plus Ro. elaphensis, appear to be the sister-group to the rest of the metastriate Ixodida. Our cox1 phylogenies did not indicate monophyly of the “structurally primitive”, “structurally intermediate” nor the “structurally advanced” groups of Haemaphysalis subgenera. Indeed, the subgenus Alloceraea may be the only monophyletic subgenus of the genus Haemaphysalis sequenced thus far. All of our mt genome and cox1 phylogenies had the subgenus Alloceraea in a clade that was separate from the rest of the Haemaphysalis ticks. If Alloceraea is indeed the sister to the rest of the Haemaphysalis subgenera this would resonate with the argument of Hoogstraal and Kim (1985), that Alloceraea was a subgenus of “primitive” Haemaphysalis. Alectorobius capensis from Japan had a higher genetic-identity to A. sawaii, which was also from Japan, than to the A. capensis from South Africa. This indicates that A. capensis from Japan may be a cryptic species with respect to the A. capensis from South Africa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.