Abstract

Like the previously reported potassium-based system, rubidium and cesium reduction of [{SiNDipp}AlI] ({SiNDipp} = {CH2SiMe2NDipp}2) with the heavier alkali metals [M = Rb and Cs] provides dimeric group 1 alumanyl derivatives, [{SiNDipp}AlM]2. In contrast, similar treatment with sodium results in over-reduction and incorporation of a formal equivalent of [{SiNDipp}Na2] into the resultant sodium alumanyl species. The dimeric K, Rb, and Cs compounds display a variable efficacy toward the C-H oxidative addition of arene C-H bonds at elevated temperatures (Cs > Rb > K, 110 °C) to yield (hydrido)(organo)aluminate species. Consistent with the synthetic experimental observations, computational (DFT) assessment of the benzene C-H activation indicates that rate-determining attack of the Al(I) nucleophile within the dimeric species is facilitated by π-engagement of the arene with the electrophilic M+ cation, which becomes increasingly favorable as group 1 is descended.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.