Abstract
In this paper, the problem of limit cycles bifurcated from the equator for a cubic polynomial system is investigated. The best result so far in the literature for this problem is six limit cycles. By using the method of singular point value, we prove that a cubic polynomial system can bifurcate seven limit cycles from the equator. We also find that a rational system has an isochronous center at the equator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.