Abstract

Remote ischaemic preconditioning (RIPC), induced by brief bouts of ischaemia followed by reperfusion, confers vascular adaptations that protect against subsequent bouts of ischaemia; however, the effect of RIPC repeated over several days on the human microcirculation is unknown. Using skin as a model, microvascular function was assessed at a control and a NO-inhibited area of skin before 1day after and 1week after administering seven consecutive days of repeated RIPC on the contralateral arm. Maximal vasodilatation was increased by ∼20-50% following 7days of repeated RIPC, and this response remained elevated 1week after stopping RIPC; however, NO-mediated vasodilatation was not affected by the RIPC stimulus. These data indicate that repeated RIPC augments maximal vasodilatation, but the underlying mechanism for this improvement is largely independent of NO. This finding suggests a role for other endothelium-derived mediators and/or for endothelium-independent adaptations with repeated RIPC. Remote ischaemic preconditioning (RIPC), induced by intermittent periods of ischaemia followed by reperfusion, confers cardiovascular protection from subsequent ischaemic bouts. RIPC increases conduit and resistance vessel function; however, the effect of RIPC on the microvasculature remains unclear. Using human skin as a microvascular model, we hypothesized that cutaneous vasodilatory (VD) function elicited by localized heating would be increased following repeated RIPC. Ten participants (23± 1years, 6 males, 4 females) performed RIPC for seven consecutive days. Each daily RIPC session consisted of 4 repetitions of 5min of arm blood flow occlusion interspersed by 5min reperfusion. Before, 1day after and 1week after the 7days of RIPC, two microdialysis fibres were placed in ventral forearm skin for continuous infusion of Ringer solution or 20mM l-NAME. Red blood cell flux was measured by laser Doppler flowmetry at each fibre site during local heating (Tloc = 39°C) and during maximal VD elicited by heating (Tloc = 43°C) and 28mM sodium nitroprusside infusion. Data were normalized to cutaneous vascular conductance (flux/mmHg). Seven days of RIPC did not alter the nitric oxide (NO) contribution to the VD response to local heating (P> 0.05). However, the maximal VD was augmented (Pre: 2.5± 0.2, Post: 3.8± 0.5flux/mmHg; P< 0.05) and remained elevated 1week post RIPC (3.3± 0.4flux/mmHg; P< 0.05). Repeated RIPC improves maximal VD but does not affect NO-mediated VD in the cutaneous microvasculature. This finding suggests that other factors may explain the vasodilatory adaptations that occur following repeated RIPC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.