Abstract

Nonsmall cell lung cancer (NSCLC) ranks first among global cancer-related deaths. Despite the emergence of various immunological and targeted therapies, immune tolerance remains a barrier to treatment. It has been found that this obstacle can be overcome by targeting autophagy-related genes (ATGs). ATGs were screened by coexpression analysis and the genes related to the prognosis of lung cancer were screened using Kaplan-Meier (K-M) survival analysis, univariate Cox regression and multivariate Cox regression. The prognostic risk model of ATGs was constructed and verified using K-M survival analysis and receiver operating characteristic (ROC) curve analysis. The prognostic risk model of ATGs was constructed. Gene set enrichment analysis (GSEA) showed that the function and pathway of ATG enrichment were closely related to immune cell function. CIBERSORT, LM22 matrix and Pearson correlation analysis showed that risk signals were significantly correlated with immune cell infiltration and immune checkpoint genes. We identified and independently verified the ATG (AL691432.2, MMP2-AS1, AC124067.2, CRNDE, ABALON, AL161431.1, NKILA) in NSCLC patients and found that immune regulation in the tumor microenvironment is closely related to this gene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call