Abstract

Although Triple Modular Redundancy (TMR) has been widely used to mitigate single event upsets (SEUs) in SRAM-based FPGAs, SEU-caused bridging faults between the TMR modules do not guarantee correctness of TMR design under SEU. In this paper, we present a novel approximation algorithm for resource binding on scheduled datapaths at the presence of TMR, which aims at containment of each SEU within a single replica of tripled operations. The key challenges are to avoid resource sharing between modular redundant operations and also to reduce the possibility of TMR masking breaches in resource allocation. We introduce the notion of vulnerability gap during resource sharing to potentially reduce the effort for white space allocation at the physical design stage in order to avoid bridging faults between TMR resources. The experimental results show that our proposed resource binding algorithm, followed by floorplanner, reduces the potential of TMR breaches by 20%, on average.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.