Abstract

Front-end electronic devices for the read-out of ionizing radiation detectors must operate in many cases at cryogenic temperatures. In this work we focus in particular on front-end read-out systems for High-Purity Germanium (HPGe) detectors, which are usually operated at Liquid Nitrogen (LN) temperature. We analyze the strong effects that the changed characteristics of the electronic active and passive devices have on the charge preamplifier performance when operated in LN, while taking into account the particularly challenging requirements that the circuit has to meet: radio-purity, physical reliability under thermal cycling, low noise (0.1–0.2% resolutions) and fast rise time (~20 ns) needed for pulse shape analysis applications. The developed circuit consists of an external silicon JFET (Junction Field Effect Transistor), an external feedback network, and an ASIC (Application Specific Integrated Circuit) realized in a 5V 0.8μm CMOS technology. This work has been carried on in the framework of the GERDA experiment (GERmanium Detector Array). We will focus in particular on the effects that this challenging cryogenic setup has on the preamplifier performances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.